Spatially Constrained Organic Diquat Anolyte for Stable Aqueous Flow Batteries
نویسندگان
چکیده
منابع مشابه
Anthraquinone Derivatives in Aqueous Flow Batteries
M. R. Gerhardt, Dr. Q. Chen, Prof. R. G. Gordon, Prof. M. J. Aziz Harvard John A. Paulson School of Engineering and Applied Sciences Cambridge, MA 02138, USA E-mail: [email protected] L. Tong, Dr. R. Gómez-Bombarelli, Prof. A. Aspuru-Guzik, Prof. R. G. Gordon Department of Chemistry and Chemical Biology Harvard University Cambridge, MA 02138, USA Prof. M. P. Marshak Department of Chemistry and ...
متن کاملOrganic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility
Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are s...
متن کاملMembrane-less organic-inorganic aqueous flow batteries with improved cell potential.
A membrane-less organic-inorganic flow battery based on zinc and quinone species is proposed. By virtue of the slow dissolution rate of the deposited anode (<11.5 mg h-1 cm-2), the battery has a cell voltage of ca. 1.52 V with an average energy efficiency of ca. 73% at 30 mA cm-2 over 12 cycles.
متن کاملRedox‐Flow Batteries: From Metals to Organic Redox‐Active Materials
Research on redox-flow batteries (RFBs) is currently experiencing a significant upturn, stimulated by the growing need to store increasing quantities of sustainably generated electrical energy. RFBs are promising candidates for the creation of smart grids, particularly when combined with photovoltaics and wind farms. To achieve the goal of "green", safe, and cost-efficient energy storage, resea...
متن کاملSolute Transport for Pulse Type Input Point Source along Temporally and Spatially Dependent Flow
In the present study, analytical solutions are obtained for two-dimensional advection dispersion equation for conservative solute transport in a semi-infinite heterogeneous porous medium with pulse type input point source of uniform nature. The change in dispersion parameter due to heterogeneity is considered as linear multiple of spatially dependent function and seepage velocity whereas seepag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Energy Letters
سال: 2018
ISSN: 2380-8195,2380-8195
DOI: 10.1021/acsenergylett.8b01550